
SenseGen: A Deep Learning Architecture for

Synthetic Sensor Data Generation

Moustafa Alzantot

University of California, Los Angeles

malzantot@ucla.edu

Supriyo Chakraborty

IBM T. J. Watson Research Center

supriyo@us.ibm.com

Mani Srivastava

University of California, Los Angeles

mbs@ucla.edu

Abstract—Our ability to synthesize sensory data that preserves
specific statistical properties of the real data has had tremendous
implications on data privacy and big data analytics. The synthetic
data can be used as a substitute for selective real data segments
– that are sensitive to the user – thus protecting privacy and
resulting in improved analytics. However, increasingly adver-
sarial roles taken by data recipients such as mobile apps, or
other cloud-based analytics services, mandate that the synthetic
data, in addition to preserving statistical properties, should also
be “difficult to distinguish from the real data. Typically, visual
inspection has been used as a test to distinguish between datasets.
But more recently, sophisticated classifier models (discrimina-
tors), corresponding to a set of events, have also been employed
to distinguish between synthesized and real data. The model
operates on both datasets and the respective event outputs are
compared for consistency.

Prior work on data synthesis have often focussed on classifiers
that are built for features explicitly preserved by the synthetic
data. This suggests that an adversary can build classifiers that
can exploit a potentially disjoint set of features for differentiating
between the two datasets. In this paper, we take a step towards
generating sensory data that can pass a deep learning based
discriminator model test, and make two specific contributions:
first, we present a deep learning based architecture for synthe-
sizing sensory data. This architecture comprises of a generator
model, which is a stack of multiple Long-Short-Term-Memory
(LSTM) networks and a Mixture Density Network (MDN);
second, we use another LSTM network based discriminator model
for distinguishing between the true and the synthesized data.
Using a dataset of accelerometer traces, collected using smart-
phones of users doing their daily activities, we show that the
deep learning based discriminator model can only distinguish
between the real and synthesized traces with an accuracy in the
neighborhood of 50%.

I. INTRODUCTION

A large number of data recipients (e.g., mobile apps, and

other cloud-based big-data analytics) rely on the collection of

personal sensory data from devices such as smartphones, wear-

ables, and home IoT devices to provide services such as remote

health monitoring [1], location tracking [2], automatic indoor

map construction and navigation [3] and so on. However, the

prospect of sharing sensitive personal data, often prohibits

large-scale user adoption and therefore the success of such

systems. To circumvent these issues and increase data sharing,

synthetic data generation has been used as an alternative to real

data sharing. The generated data preserves only the required

statistics of the real data (used by the apps to provide service)

and nothing else and are used as a substitute for selective real

data segments that are sensitive to the user thus protecting

privacy and resulting in improved analytics.

However, increasingly adversarial roles taken by the data

recipients mandate that the synthetic data, in addition to

preserving statistical properties, should also be “difficult” to

distinguish from the real data. Even in non-adversarial settings,

analytics services can behave in unexpected ways if the input

data is different from the expected data, thereby requiring the

synthesized and real datasets to exhibit “similarity”. Typically,

visual inspection has been used as a test to distinguish between

datasets. But more recently, sophisticated classifier models

(discriminators), corresponding to a set of events, have also

been employed to distinguish between synthesized and real

data. The model operates on both datasets and the respective

event outputs are compared for consistency. In fact, prior work

on data synthesis have often focussed on classifiers that are

built for features explicitly preserved by the synthetic data.

This suggests that an adversary can build classifiers that can

exploit a potentially disjoint set of features for differentiating

between the two datasets.

In this paper, we present SenseGen – a deep learning

based generative model for synthesizing sensory data. While

deep learning methods are known to be capable of generating

realistic data samples, training them was considered to be

difficult requiring large amounts of data. However, recent

work on generative models such as Generative Adversarial

Networks [4], [5] (GAN) and variational auto-encoders [6], [7]

have shown that it is possible to train these models with moder-

ate sized datasets. GANs have proven successful in generating

different types of data including photo-realistic high resolution

images [8], realistic images from text description [9], and even

for new text and music composition [10], [11]. Furthermore,

inspired by the architecture of GANs, we also use a deep

learning based discriminator model. The goal of the generator

model is to synthesize data that can pass the discriminator

test that is designed to distinguish between synthesized and

real data. Note, unlike prior work on data synthesis, a deep

learning based discriminator is not trained on a pre-determined

set of features. Instead, it continuously learns the best set of

features that can be used to differentiate between the real and

synthesized data making it hard for the generator to pass the

discriminator test.

To summarize, we make two contributions. First, we present

a deep learning based architecture for synthesizing sensory

a
rX

iv
:1

7
0
1
.0

8
8
8
6
v
1

[c

s.
L

G
]

 3
1
 J

a
n
 2

0
1
7

data. This architecture comprises of a generator model, which

is a stack of multiple Long-Short-Term-Memory (LSTM)

networks and a Mixture Density Network (MDN). Second,

we use another LSTM network based discriminator model

for distinguishing between the true and the synthesized data.

Using a dataset of accelerometer traces, collected using smart-

phones of users doing their daily activities, we show that the

deep learning based discriminator model can only distinguish

between the real and synthesized traces with an accuracy in

the neighborhood of 50%.

The rest of this paper is organized as follows: Section II

provides a description for our model architecture and the

training algorithm used. This is followed by Section III that

describes our experimental design and initial results. Finally,

Section IV concludes the paper.

II. MODEL DESIGN

Sensors data, e.g. accelerometer, gyroscope, barometer, etc.,

are represented as a sequence of values x = (x1,x2, ...,xT)
where xi ∈ R

d, for i = 1, . . . , |T | where d is the dimensional-

ity of the time series (i.e. d = 3 in case of 3-axis accelerometer

) and T is the number of time steps for which the data has

been collected.

SenseGen consists of two deep learning models:

• Generator (G): The generator G is capable of generating

new synthetic time series data from random noise input.

• Discriminator (D): The goal of the discriminator D is

to assess the quality of the examples generated by the

generator G.

Both G and D are based on recurrent neural network models

which have shown a lot of success in sequential data modeling.

We describe the model details below.

Algorithm 1 Training algorithm

1: for t = 1, 2, . . . , T do

2: Sample Xtrue minibatch from true data

3: Sample Xgen minibatch from the generative model G

4: Train the discriminative model D on the training set

(Xtrue,Xgen) for 200 epochs

5: Sample another Xtrue minibatch from true data

6: Sample another Xgen minibatch from the generative

model G

7: Train the generative model G on the training set (Xtrue)
for 100 epochs

8: end for

A. Generative Model

Recurrent neural networks (RNN) are a class of neural

networks which are distinguished by having units with feed-

back cycles which allows the units to maintain a memory of

state about the previous inputs. This makes them suitable for

handling tasks dealing with sequential time-series inputs. The

input time-series is applied to the neural network units one

step at time. Each RNN artificial neuron (often called RNN

unit or RNN cell) maintains a hidden internal state memory

ht which is updated at each time-step according to the new

input xt and previous internal state memory value ht−1

ht = σ(Whhht−1 +Wxhxt + bh)

where σ(x) is the sigmoid activation function

σ(x) =
1

1 + e−x

Also each unit generates another time-series of outputs ot as

a function of the internal memory state which is computed

according to the following equation:

ot = tanh(Woht + bo)

The set θ = {Whh,Wxh, bh,Wo, bo} represents the RNN

cell parameters. The RNN training algorithm picks the values

of θ that minimizes the defined loss function.

In order to handle complex time-series sequences, Multiple

RNN units can be used at the same layer and also multiple

RNN units can be stacked on top of each other such that the

time series of outputs from the RNN units at one layer are

used as inputs to the RNN units on top of them. This way, we

can design more powerful recurrent neural networks which are

both deep and wide. Like other neural networks, we train a

recurrent neural networks possible by using a modified version

of back-propagation known as back-propagation through time

(BPTT) algorithm [12]. However, RNN units suffer from two

major problems during training deep models over long time-

series inputs. First, it is the vanishing gradient problem, where

the error gradient goes to zero during propagation presenting

difficulty while learning the weights of early layers or captur-

ing long-term depedencies. Second, it is the exploding gradient

problem, where the gradient value might grow exponentially

causing numerical errors in the training algorithm. These two

problems present a major hurdle in training RNNs. To solve

the exploding gradient problem, the gradient value is clipped

at each unit, while modified architectures of RNN units such

as the Long Short Term Memory (LSTM) [13] and Gated

Recurrent Units (GRU) [14] have been introduced to come

over the vanishing gradient problem.

LSTM units are modified version of the standard RNN units

that add three additional gates inside the RNN unit : input

gate (it), forget gate (ft) and output gate (ot). The values of

these gates are computed as functions of the unit’s internal cell

state ct and current input xt. These gates are used to control

what information being stored in the unit’s internal memory

ht to avoid vanishing gradient problem and become better in

remembering sequence dependencies for longer range. The

gates, internal memory and LSTM unit output at each time

step are computed according to the following equations:

ft = σ(Wxfxt +Whfht−1 + bf)

it = σ(Wxixt +Whiht−1 + bi)

ot = σ(Wxoxt +Whoht−1 + bo)

ct = ft � ct−1 + it � tanh(Whcht−1 +Wxcxt + bc)

ht = ot � tanh(ct)

where � is the elementwise multiplication. In the rest of the

paper, we define the function LSTM that maps the current

input xt and current LSTM unit output ht to new output as

an abstraction of the previous LSTM update equations.

ht = LSTM(xt, ht−1)

Like the standard RNN units, LSTM units can also be stacked

on top of each other in order to model complex time-series

data. We use LSTMs in our model because they are successful

in modeling sequences with long-term dependencies.

Recurrent Neural networks can be used for the generation

of a sequence with any length by predicting the sequence one

step at a time. At each time step, the network output yt is

used to define a probability distribution for the next step xt+1

value.

xt+1 ∼ pr(xt+1|yt)

The value xt+1 is then fed back into the model as a new

input to predict another time step. By repeatedly doing this, it

is theoretically possible to generate a sequence of any length.

However, the choice of output distribution becomes critical

and must be chosen carefully to represent the type of data

we are generating. The simplest choice that we consider the

output yt as the next step sample xt+1 = yt. and then we

define the loss as the root mean squared difference between

the sequence of inputs and the sequence of predictions.

LG(θG) =

T
∑

t=1

(xt − yt)
2

Then we train the whole model by using gradient descent

to minimize the loss value. However, we find this setup to be

incapable of generating good sensory data sequences for the

following reasons:

• Since all RNN update equations are deterministic, this

means that if you try generating sequences from a given

start input value x0 (usually starting by zero) the model

will generate the same sequence again at every-time.

• Assigning the model output as the next sample means that

the next sample distribution is a uni-model distribution

with zero variance. Because for sensory data at a given

step more than one value can be a good choice for the

next step a uni-modal prediction is not enough. A more

flexible generation of sensory data requires probabilistic

sampling from a multi-modal distribution on top of the

RNN.

As a solution for these issues, we use Mixture Density

Network (MDN) [15]. Mixture density network is a com-

bination of a neural network and mixture distribution. The

outputs of neural network are used to specify the weights of the

mixtures and the parameters of each distribution. [16] shows

how MDN with Gaussian mixture model (GMM) defined on

top of a recurrent neural network is successful in learning how

to generate highly realistic handwriting by predicting the pen

location one point at a time.

Our generative model architecture is shown in Figure II-A.

At the bottom we have a stack of 3 layers (l
(1)
t , l

(2)
t , l

(3)
t) of

LSTM units. Each layer has 256 units.

l
(1)
t = LSTM(l

(1)
t−1, xt)

l
(2)
t = LSTM(l

(2)
t−1, l

(1)
t)

l
(3)
t = LSTM(l

(2)
t−1, l

(1)
t)

The output from the last LSTM layer is feed into a fully

connected layer with 128 units with sigmoid activations.

l
(4)
t = σ(W4l

(3)
t + b4)

where W4 ∈ R
256x128, b4 ∈ R

128 The final layer is another

fully connected layer with 72 output units.

l
(5)
t = σ(W5l

(4)
t + b5)

where W5 ∈ R
128x72, b5 ∈ R

72. The outputs from the last

layer l
(5)
t are used as the weights and parameters of the output

Gaussian mixture model (GMM).

πt(x1..t) = softmax(l
(5)
t [1...24])

µt(x1..t) = l
(5)
t [25...48]

σt(x1..t) = e(l
(5)
t [49...72])

where the softmax function:

softmax(xk) =
exk

∑24
j=1 e

xj

is used to ensure that weights defined by pit are normalized (i.e
∑24

k=1 πk = 1), and the exponential function while computing

the standard deviation of the Gaussians σt is meant to ensure

that the σt is positive. The mixture weights πt, guassian

means µt, and standard deviations σt are used to define to

a probability distribution for the next output

pr(xt+1|πt, µt, σt) =
24
∑

k=1

πk
t (x1..t) ∗ N (xt+1;µ

k
t (x1..t), σ

k
t (x1..t))

from which we can sample the predicted next step value.

xt+1 ∼ pr
(

xt+1|πt(x1..t), µt(x1..t), σt(x1..t)
)

The whole model is trained end-to-end by RMSProp [17]

and truncated back-propagation through time with a cost

function L(θG) defined to increase the likelihood of generating

the next timestep value. This is the equivalent to minimizing

the negative log likelihood L(θG) with respect to the set of

generative model parameters θG .

LG(θG) = −
T
∑

t=1

log (pr(xt+1|πt(x1..t), µt(x1..t), σt(x1..t)))

